Show all of your work as partial credit will be given.

1. Find a general solution to the differential equation using the method of variation of parameters

\[y'' + 2y' + y = e^{-t} \ln t. \]

Answers

Problem 1.

First we consider the corresponding homogeneous equation

\[y'' + 2y' + y = 0. \]

Its characteristic equation \(r^2 + 2r + 1 = 0 \) has a double root \(r = -1 \). Therefore,

\[y_1 = e^{-t}, \quad y_2 = te^{-t}. \]

We write a particular solution as \(y_p = v_1y_1 + v_2y_2 \). The Wronskian is

\[W = (e^{-t})'te^{-t} - e^{-t}(te^{-t})' = \cdots = -e^{-2t}. \]

Then

\[v_1' = t \ln t, \quad v_2' = \ln t \]