Optimal Harvesting of a Semilinear Elliptic Logistic Fishery Model

Wandi Ding1, Suzanne Lenhart2

1University of Tennessee - Knoxville, ding@math.utk.edu
2University of Tennessee - Knoxville & Oak Ridge National Laboratory
Outline

- Development of Fishery Models
- Motivation
- The Model
- Optimal Control Problems
- Numerical Examples for J_1
- Numerical Examples for J_2
Development of Fishery Models[1]

- 1900 - 1920: First Efforts
 - F. I. Baranov: grandfather of fisheries population dynamics
 - ICES (1902): International Council for the Exploration of the Sea

1920 - 1960: Establishment of Science
- Ricker, Beverton and Holt, Leslie, Lotka and Volterra, Thompson etc.
- multi-species modeling,
- age- and size-structure dynamics;
1960 - 1980: Deterministic Theory, Statistical Practice

- advances in age-structured models (Gulland, Pope, Doubleday),
• 1960 - 1980: Deterministic Theory, Statistical Practice

 • advances in age-structured models (Gulland, Pope, Doubleday),

 • improvements to surplus production (Pella, Tomlinson, Schnute, Fletcher, Hilborn) and stock recruitment models,
1960 - 1980: Deterministic Theory, Statistical Practice

- advances in age-structured models (*Gulland, Pope, Doubleday*),
- improvements to surplus production (*Pella, Tomlinson, Schnute, Fletcher, Hilborn*) and stock recruitment models,
- bioeconomic models (*Clark*)
- management control models (*Hilborn, Walters*)
• 1980-2000: The Golden Age
 • integration between mathematics and statistics
• 1980-2000: The Golden Age
 • integration between mathematics and statistics
 • Bayesian and time series methods (uncertainty)
• 1980-2000: The Golden Age
 • integration between mathematics and statistics
 • Bayesian and time series methods (uncertainty)
 • realistic modeling for:
 • age and size-structured population
 • spatial dynamics
 • harvesting strategies (stochasticity, time variation)
• The New Millenium
 • future models:
 • habitat and spatial concerns
 • genetics
 • multispecies interactions
 • environmental factors
 • effects of harvesting on the ecosystem
 • socioeconomic concerns
Motivation

Neubert *(Ecology Letter, 2003)* studied the fishery management problem:

Maximize the yield

\[J(h) = \int_0^l h(x)u(x) \, dx, \quad 0 \leq h(x) \leq h_{\text{max}} \]

Subject to

\[- \frac{d^2u}{dx^2} = u(1 - u) - h(x)u, \quad 0 < x < l, \]

\[u(0) = u(l) = 0. \]
Neubert’s Results

- No-take marine reserves are always part of an optimal harvest designed to maximize yield;
Neubert’s Results

- No-take marine reserves are always part of an optimal harvest designed to maximize yield;
- The sizes and locations of the optimal reserves depend on a dimensionless length parameter;
Neubert’s Results

- No-take marine reserves are always part of an optimal harvest designed to maximize yield;
- The sizes and locations of the optimal reserves depend on a dimensionless length parameter;
- For small values of this parameter, the maximum yield is obtained by placing a large reserve in the center of the habitat;
Neubert’s Results

- No-take marine reserves are always part of an optimal harvest designed to maximize yield;
- The sizes and locations of the optimal reserves depend on a dimensionless length parameter;
- For small values of this parameter, the maximum yield is obtained by placing a large reserve in the center of the habitat;
- For large values of this parameter, the optimal harvesting strategy is a spatial “chattering control” with infinite sequences of reserves alternating with areas of intense fishing;
Our Fishery Model

\begin{align*}
-\Delta u &= ru(1 - u) - h(x)u, & x \in \Omega, \\
 u &= 0, & x \in \partial \Omega.
\end{align*}

where \(u(x) \) is the fish density, \(r \) is the growth rate, \(h(x) \) is the harvesting depending on the location of fish, \(\Omega \in R^n \), smooth and bounded domain.
Optimal Control Problems

Goals:

- Maximizing the yield and minimizing the cost of fishing.

\[J_1(h) = \int_{\Omega} h(x)u(x) \, dx - \int_{\Omega} (B_1 + B_2 h)h \, dx, \quad h \in U_1. \]

- Maximizing the yield and minimizing the variation of the fishing effort.

\[J_2(h) = \int_{\Omega} h(x)u(x) \, dx - A \int_{\Omega} |\nabla h|^2 \, dx, \quad h \in U_2, \]
Optimality System I

state equation

\[
\begin{cases}
 -\Delta u = ru(1 - u) - h(x)u, & x \in \Omega, \\
 u = 0, & x \in \partial\Omega;
\end{cases}
\]

adjoint equation

\[
\begin{cases}
 -\Delta p - r(1 - 2u)p + hp = h, & x \in \Omega, \\
 p = 0, & x \in \partial\Omega;
\end{cases}
\]

characterization of optimal control

\[
h(x) = \min\left\{ \max\left\{ 0, \frac{u - pu - B_1}{2B_2} \right\}, 1 - \delta \right\}.
\]
Numerical Examples for J_1: 1-D case, B_2 effect

Set $B_1 = 0.1$, vary $B_2 = 0.5, 1.25, 2.5, 5, 10$
Numerical Examples for J_1: 1-D case, small B_2

Set $B_1 = 0$, vary $B_2 = 0.1, 0.05, 0.01$
Numerical Examples for J_1: 2-D case

B_1 = 0, B_2 = 1, r = 5, L = 2.5

B_1 = 0, B_2 = 1, r = 5, L = 2.5

fish density for $J_1(h)$

optimal harvesting for $J_1(h)$
Numerical Examples for J_1: 2-D case, B_1 effect
Numerical Examples for J_1: 2-D case, domain size effect

Optimal Harvesting of a Semilinear Elliptic Logistic Fishery Model – p.17/21
Numerical Examples for J_1: 2-D case, small B_2

$B_1 = 0, B_2 = 0.05, r = 5, L = 2.5$

Fish density for $J_1(h)$

Optimal harvesting for $J_1(h)$
Optimality System II

state equation

\[
\begin{aligned}
-\Delta u &= ru(1 - u) - h(x)u, & x \in \Omega, \\
\frac{\partial u}{\partial x} &= 0, & x \in \partial \Omega;
\end{aligned}
\]

adjoint equation

\[
\begin{aligned}
-\Delta p - r(1 - 2u)p + hp &= h, & x \in \Omega, \\
p &= 0, & x \in \partial \Omega;
\end{aligned}
\]

characterization of optimal control

\[
\min \left\{ \max \left(pu - u - 2A\Delta h, h - (1 - \delta) \right), h - 0 \right\} = 0.
\]
Numerical Examples for J_2:

Vary $A = 1, 2.5, 5, 10$
Conclusion: in the long run

- If we want to maximize yield and minimize cost \(J_1 \), then increasing labor cost \(B_2 \) or fixed cost \(B_1 \) will decrease optimal harvesting.

- If we only want to maximize yield, then reserve is part of the optimal harvesting strategy.

- For \(J_1 \), the optimal benefit increases when domain size increases.

- If we want to maximize yield and minimize variation in fishing effort, then increasing \(A \) will reduce optimal harvesting.
Conclusion: in the long run

- If we want to maximize yield and minimize cost (J_1), then increasing labor cost (B_2) or fixed cost (B_1) will decrease optimal harvesting;
- If we only want to maximize yield, then reserve is part of the optimal harvesting strategy;
Conclusion: in the long run

- If we want to maximize yield and minimize cost (J_1), then increasing labor cost (B_2) or fixed cost (B_1) will decrease optimal harvesting;
- If we only want to maximize yield, then reserve is part of the optimal harvesting strategy;
- For J_1, the optimal benefit increases when domain size increases;
Conclusion: in the long run

- If we want to maximize yield and minimize cost (J_1), then increasing labor cost (B_2) or fixed cost (B_1) will decrease optimal harvesting;
- If we only want to maximize yield, then reserve is part of the optimal harvesting strategy;
- For J_1, the optimal benefit increases when domain size increases;
- If we want to maximize yield and minimize variation in fishing effort, then increasing (A) will reduce optimal harvesting.